API

This page contains the auto-generated API documentation for tsml-eval package functions and classes.

Estimators: tsml_eval.estimators

Wrappers and misc estimators for use with tsml-eval.

estimators.SklearnToTsmlClassifier([...])

Wrapper for sklearn estimators to use the tsml base class.

estimators.SklearnToTsmlClusterer([...])

Wrapper for sklearn estimators to use the tsml base class.

estimators.SklearnToTsmlRegressor([...])

Wrapper for sklearn estimators to use the tsml base class.

estimators.classification.hybrid.FromFileHIVECOTE(...)

HIVE-COTE from file.

estimators.clustering.consensus.IterativeVotingClustering([...])

IVC (Iterative Voting Clustering) Consensus Clusterer.

estimators.clustering.consensus.FromFileIterativeVotingClustering(...)

IVC (Iterative Voting Clustering) Consensus Clusterer.

estimators.clustering.consensus.SimpleVote([...])

SimpleVote clustering ensemble.

estimators.clustering.consensus.FromFileSimpleVote(...)

SimpleVote clustering ensemble.

Evaluation: tsml_eval.evaluation

Functions for evaluating the performance of a model.

evaluation.evaluate_classifiers(...[, ...])

Evaluate multiple classifiers on multiple datasets.

evaluation.evaluate_classifiers_from_file(...)

Evaluate multiple classifiers on multiple datasets from file.

evaluation.evaluate_classifiers_by_problem(...)

Evaluate multiple classifiers on multiple datasets from file using standard paths.

evaluation.evaluate_clusterers(...[, ...])

Evaluate multiple clusterers on multiple datasets.

evaluation.evaluate_clusterers_from_file(...)

Evaluate multiple clusterers on multiple datasets from file.

evaluation.evaluate_clusterers_by_problem(...)

Evaluate multiple clusterers on multiple datasets from file using standard paths.

evaluation.evaluate_regressors(...[, ...])

Evaluate multiple regressors on multiple datasets.

evaluation.evaluate_regressors_from_file(...)

Evaluate multiple regressors on multiple datasets from file.

evaluation.evaluate_regressors_by_problem(...)

Evaluate multiple regressors on multiple datasets from file using standard paths.

evaluation.storage.ClassifierResults([...])

A class for storing and managing results from classification experiments.

evaluation.storage.ClustererResults([...])

A class for storing and managing results from clustering experiments.

evaluation.storage.RegressorResults([...])

A class for storing and managing results from regression experiments.

evaluation.storage.load_classifier_results(...)

Load and return classifier results from a specified file.

evaluation.storage.load_clusterer_results(...)

Load and return clusterer results from a specified file.

evaluation.storage.load_regressor_results(...)

Load and return regressor results from a specified file.

Experiments: tsml_eval.experiments

Functions for running experiments.

experiments.run_classification_experiment(...)

Run a classification experiment and save the results to file.

experiments.load_and_run_classification_experiment(...)

Load a dataset and run a classification experiment.

experiments.run_clustering_experiment(...[, ...])

Run a clustering experiment and save the results to file.

experiments.load_and_run_clustering_experiment(...)

Load a dataset and run a clustering experiment.

experiments.run_regression_experiment(...[, ...])

Run a regression experiment and save the results to file.

experiments.load_and_run_regression_experiment(...)

Load a dataset and run a regression experiment.

experiments.get_classifier_by_name(...[, ...])

Return a classifier matching a given input name.

experiments.get_clusterer_by_name(clusterer_name)

Return a clusterer matching a given input name.

experiments.get_regressor_by_name(regressor_name)

Return a regressor matching a given input name.

experiments.run_timing_experiment(estimators)

Return the time taken to run estimator functions for randomly generated data.

experiments.classification_cross_validation(X, ...)

Run a classification experiment using cross-validation.

experiments.classification_cross_validation_folds(X, y)

Get the folds for a classification cross-validation experiment.

experiments.regression_cross_validation(X, ...)

Run a regression experiment using cross-validation.

experiments.regression_cross_validation_folds(X, y)

Get the folds for a regression cross-validation experiment.

Utilities: tsml_eval.utils

Public utility functions used elsewhere in the package.

utils.arguments.parse_args(args)

Parse the command line arguments for tsml_eval.

utils.datasets.load_experiment_data(...)

Load data for experiments.

utils.datasets.copy_dataset_ts_files(...)

Copy the TRAIN and TEST .ts files of the datasets to the destination path.

utils.datasets.save_merged_dataset_splits(...)

Merge the TRAIN and TEST .ts files of a dataset and save the merged file.

utils.estimator_validation.is_sklearn_estimator(...)

Check if estimator is a scikit-learn estimator.

utils.estimator_validation.is_sklearn_classifier(...)

Check if estimator is a scikit-learn classifier.

utils.estimator_validation.is_sklearn_regressor(...)

Check if estimator is a scikit-learn regressor.

utils.estimator_validation.is_sklearn_clusterer(...)

Check if estimator is a scikit-learn clusterer.

utils.experiments.assign_gpu([set_environ])

Assign a GPU to the current process.

utils.experiments.timing_benchmark([...])

Measures the time taken to sort a given number of numpy arrays of a specified size.

utils.experiments.estimator_attributes_to_file(...)

Write the attributes of an estimator to file(s).

utils.functions.str_in_nested_list(...)

Find an item in a nested list.

utils.functions.pair_list_to_dict(pl)

Convert a 2d list of pairs to a dict.

utils.functions.time_to_milliseconds(...)

Convert a time value from the given time unit to milliseconds.

utils.functions.rank_array(arr[, higher_better])

Assign a rank to each value in a 1D numpy array.

utils.memory_recorder.record_max_memory(function)

Record the maximum memory usage of a function.

utils.publications.extract_publication_csv_from_evaluation(...)

Extract the CSV files from the evaluation directory to a new directory.

utils.publications.parameter_table_from_estimator_selector(...)

Create a table of estimator names and their parameters.

utils.resampling.resample_data(X_train, ...)

Resample data without replacement using a random state.

utils.resampling.resample_data_indices(...)

Return data resample indices without replacement using a random state.

utils.resampling.stratified_resample_data(...)

Stratified resample data without replacement using a random state.

utils.resampling.stratified_resample_data_indices(...)

Return stratified data resample indices without replacement using a random state.

utils.results_loading.load_estimator_results(...)

Load and return estimator results from a specified file.

utils.results_loading.estimator_results_to_dict(...)

Convert a list of EstimatorResults objects to a dictionary of metrics.

utils.results_loading.load_estimator_results_to_dict(...)

Load and convert EstimatorResults objects to a dictionary of metrics.

utils.results_loading.estimator_results_to_array(...)

Convert a list of EstimatorResults objects to an array of metrics.

utils.results_loading.load_estimator_results_to_array(...)

Load and convert EstimatorResults objects to an array of metrics.

utils.results_repair.fix_broken_second_line(...)

Fix a results while where the written second line has line breaks.

utils.results_validation.validate_results_file(...)

Validate that a results file is in the correct format.

utils.results_validation.compare_result_file_resample(...)

Validate that two results files use the same data resample.

utils.results_writing.write_classification_results(...)

Write the predictions for a classification experiment in the format used by tsml.

utils.results_writing.write_regression_results(...)

Write the predictions for a regression experiment in the format used by tsml.

utils.results_writing.write_clustering_results(...)

Write the predictions for a clustering experiment in the format used by tsml.

utils.results_writing.write_results_to_tsml_format(...)

Write the predictions for an experiment in the standard format used by tsml.